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A second-order splitting scheme is developed to integrate the three-dimensional Vlasov 
equation for a plasma in a magnetic field. In the scheme we divide the integration of the 
Vlasov equation into a series of intermediate steps and Fourier interpolation and the 
accurate space derivative method with a third-order Taylor expansion are used to integrate 
the fractional equations. Numerical experiments related to cyclotron waves in 2 and 24 D 
are demonstrated with high accuracy and efficiency. 

1. INTRODUCTION 

The numerical integration of the Vlasov equation has been intensely studied in 
recent years [l-6]. However, little progress has been made on fast and accurate 
integration of the Vlasov equation in two and three dimensions for a magnetized 
plasma. A knowledge of the nonlinear evolution of the magnetized plasmas in two 
and three dimensions is indispensible in understanding the plasma physics of 
controlled thermonuclear fusion. 

A splitting scheme for the numerical solution of the one-dimensional Vlasov 
equation for an unmagnetized plasma has recently been proposed by Cheng and Knorr 
[6]. In the scheme, the Vlasov equation was integrated in the X-U phase space by 
splitting up the free streaming term and the acceleration term in such a way that the 
overall scheme is second order in dt. Fourier interpolation and spline interpolation 
were used to integrate the resulting fractional equations, and the scheme was demon- 
strated to be very accurate and efficient. Another interesting approach for the 
numerical integration of the Vlasov equation is based on accurate space derivative 
method in which the derivatives with respect to all the phas space variables are com- 
puted by finite Fourier transform methods. The time differencing scheme is a third- 
order truncated Taylor series expansion of the distribution function in dt [5]. The 
approach has the disadvantages that not only the computation becomes very time 
consuming when there are a number of nonlinear terms in several variables, but also 
small d t has to be used due to numerical stability criteria. 

In this paper we generalize the splitting scheme [6] to the integration of the three- 
dimensional Vlasov equation for a magnetized plasma. In the scheme we divide 
the integration of the Vlasov equation into a series of intermediate steps and the overall 
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scheme is second order in d t. The resulting fractional equations are computed at 
each time step with Fourier interpolation and the accurate space derivative method 
with a third-order Taylor expansion [5]. Since fast Foureir transform is used to do 
the Fourier interpolation and Gazdag’s accurate space derivative calculations, the 
programming becomes very simple and the accuracy and efficiency are accomplished. 

The generalized splitting scheme is described in Section 2. In Section 3 we demon- 
strate the accuracy and efficiency of the splitting scheme through numerical experi- 
ments related to linear and nonlinear cyclotron waves in 2 and 2$ dimensions for 
a Maxwellian equilibrium plasma. The conclusions are given in Section 4. 

2. THE GENERALIZED SPLITTING SCHEME 

In this section we will present the splitting scheme for integrating the Vlasov 
equation with external electric and magnetic fields. For simplicity, we consider the 
case with Bext = B,&, , EeXt = 0. The numerical procedure can be generalized to 
include more complicated problems with external inhomogeneous magnetic fields. 

Consider a three-dimensional, electrostatic collisionless electron plasma immersed 
in a uniform static magnetic field B, = B,e^, . The dimensionless forms of the Vlasov- 
Poisson equations are 

$+ v+(E(x,t)+vx OJ+O, 

V*E= 1 +(x,v,t)dv, (2) 

where wg = eB,,/mco,, is the ratio of cylcotron frequency to electron plasma 
frequency uge . A periodic boundary condition in x is assumed. Following the 
principles of the splitting scheme used in [6, 71, we split Eq. (1) according to the 
following four-step procedure. 

(i) Solve the free streaming equation 

(aflat) + v * @f/lax) = 0 

for half a time step with the solution 

f *(x, v) = f”(x - (v A t/2), v) 

where f”(x, v) denotes the distribution at t = n dt. 

(ii) Calculate the electric field from the Poisson equation 

(3) 

(4) 

V . E*(x) = 1 - j--f*(x, v) dv. (5) 
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(iii) Integrate the acceleration equation 

(aflat) - (E*(x) + v x oc) . (aflav) = 0 

for a whole time step with the solution 

f**(X, v) = f*(X, v*) 

(6) 

(7) 

where v* is the solution of the characteristics of Eq. (6) and is given by 

v,*(x) = E,*(x)/w, + (u, - 9) cos wc At + (ov + *) sin w, At, 

u,*(x) = - F + (uy + *) cos we At - (Y= - F) sin w, At, 

v,*(x) = II, + E,*(x) At. (8) 

(iv) Solve the free streaming equation (aflat) + u . (aflax) = 0 again for half 
a time step with the solution 

p+yx, v) = f**(X - (v h/2), v). (9) 

By substituting Eqs. (7) and (4) into Eq. (9) we obtain 

with 

p+yx, v) = p(X’, v’) 

x’ = x - (42)(v + v’), 

v’ = v*(x - (vdt/2)), 

(10) 

(11) 

where v*(x) is given by (8). 
The characteristics of Eq. (1) are given by 

dv/dt = -[E(x, t) + v x coo], (12) 

dxjdt = v. (13) 

Their solution is equivalent to the solution of Eq. (1). Now we are going to integrate 
Eqs. (12) and (13) from t, to t,+l . Their solutions, correct to second order in At, 
are given by 
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x” = Xn+l - (At/2)(v” + vn+l), 

2.‘$)fi = - E L$Y + ($+l + Ez~~‘2’ ) c*s 0, At _ ($+l - ‘::I”’ ) sin 0, At, 

(14) n 21, = ,;+I + E;+(1/2) ‘,t, 

where the time centered electric field E n+(lP) is evaluated at x”+(lP) ,xn+l - 
vn+l(A t/2) + O(A t2). 

A comparison between Eqs. (11) and (14) shows that the splitting scheme (3)-(g) 
is correct to second order in dt. It is clear that after we have shifted fin the x space 
at time t = 0 for one half time step, we can integrate f in the v space for a full time 
step, then shift f in x space for a full time step, and so on. 

The above procedure can be applied to more complicated situations with magnetic 
field inhomogeneity and the results remain accurate to second orler in d t. The proof 
is straightforward and will not be presented here. Another advantage of this splitting 
scheme is that it does not depend on periodic boundary conditions, while the Fourier- 
Hermite transform method is critically dependent upon spatial periodicity. 

From the above analysis we see that our scheme depends on the accuracy of the 
numerical integration of the linear Eqs. (4) and (7). There are acceptable ways of 
integrating them, such as Fourier and spline interpolation methods [6], ASD method 
[5, 81, etc. However, the advantage of each method depends upon the geometry 
and boundary conditions of the system studied. For free streaming Eq. (4) with 
spatial periodicity, we will use the Fourier interpolation method to do three sub- 
sequent ID shiftings. The Fourier interpolation can be done more efficiently by 
employing fast Fourier transform. Integrating acceleration Eq. (6) is more difficult. 
Due to the fact that the electric and magnetic fields accelerate the particles differently, 
interpolation methods become much more complicated and time consuming in two 
and three dimensions. Therefore, we will use one more splitting scheme to integrate 
Eq. (6) (called method 1.) 

In method 1, we replace Eq. (6) with the following sequence of equations 

--~“f+$c&Lo, af 
at w,At au, c Y (154 

w -Lzi?f () E* af 
w,At au, w,Atav,= ’ 

&*s = 0, 
z 

(154 
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where Eqs. (Isa), (1%) must be integrated for the time step dt. The variable 4 in 
Eq. (15b) is the azimuthal angle in the a,--U, plane. 

A formal solution of Eqs. (15a)-(15d) is given by the sequence of shiftings of the 
distribution 

f*@n 3 0,) 0,) =fbht + &,*I~, 30, - E,*b, , ~1, 
f **h! 7 v I, v,) = f*(u, cos(w, At) + v, sin(w, Lit), v, cos(w, dt) 

- u, sin(w, d t),~), 

f***b , Q,, 4 = f**b - E~*/QJ, , v, + &*h , u,), 

f”b , uy 3 03 = f***<~ , %,, 0, + Ez* 4, 

where b, e denote the initial and the final distribution, respectively. Subsequently, 
substituting (16d), (16c), (16b) into (16a), we obtain 

f”(G 3 5 3 Yz) = f”(v * e 3 h*, Q*) 

where I),*, vy*, v,*, are given by Eq. (18) and the equivalence between Eqs. (Isa)- 
(15d) and Eq. (6) is obvious. 

From Eq. (15b) it seems most natural to use cylindrical coordinate system for the 
velocity space. Then (15a) and (15~) become 

E, sin C$ - E, cos 4 af 
av+ 

E, cos + + Ev sin 4 af 
w,At o,Atv w=O 

(1% 

af E, sin + - Ey cos + af E,cos+fE,sin+ af -- -- 
at w,At au w,Atv v=O (17b) 

respectively. We will use accurate space derivative method together with the third- 
order truncation of the Taylor series to integrate (17a) and (17b). Equations (15b) 
and (15d) will be integrated by employing a one-dimensional Fourier interpolation. 
The stability and error analysis of using the third-order Taylor series with accurate 
space derivative method on integrating the convective type equations has been inves- 
tigated by Gazdag [5, 81. It has been applied with success in solving several nonlinear 
partial differential equations including the Vlasov-Poisson system of equations in 
three phase space variables [5]. 

We have also applied Gazdag’s accurate space derivative method to integrate 
Eq. (6) directly (called method 2). In cylindrical coordinates, Eq. (6) can be written 
as 

(aflat) - E,(afa0,) = 0. 
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However, the stability criteria forces us to use a small time step of integration with 
this method for the strong magnetic field case. Employing method 1 allows us to use 
a larger time step because the fast gyration (15b) of the particle has been separated 
from the slow guiding center drift motion (15a) and (15~). Also by choosing 
w, dt = LI 4, we do not need to perform interpolation to solve (15b). Thus, for the 
overall computation, method 1 is better than method 2. Of course, the size of the time 
step dt must be limited by the sampling theorem for the maximum frequency 
wmaX = +lt observable in the system and by the stability criteria of the accurate 
space derivative method. However if the magnetic field is weak, method 2 becomes 
superior to method 1. This is because we can use as large a time step for the latter 
as for the former and the computation effort is less for the latter. 

In the following, we will demonstrate the accuracy and efficiency of the splitting 
scheme by integrating the 2- and 24-D Vlasov equations. 

3. NUMERICAL RESULTS 

In this section wei will present the results of integrating the 2- and 28-D Vlasov 
equation. The external magnetic field B is chosen to lie in the y-z plane with B * C, = 
B cos 8. We use a rectangular mesh in the x-y plane. In the velocity space we use 
cylindrical coordinates such that v is taken along B and v, along & . No mesh point 
is placed at the origin and the smallest velocities associated with the mesh points in 
the v direction and trL plane are do,,/2 and dv,/2, respectively, as shown in Fig. 1. 
The computational domain is 

iV, , NY, 2N,, Nd, and N,. designate the number of mesh points used in the x, y, ull , 
4, and a, directions, respectively. 

(A) 2-D and 24-D Linearized Cases 

To test the splitting scheme and gain some insight of the numerical system, we 
first integrate the linearized Vlasov-Poisson system in 2D and 29 D for one- and two- 
species plasmas. The equilibrium distribution is a Maxwellian, foi , with two or three 
velocity components and the initial condition is 

h(x, v, 0) = j&%1 + -4 ~0s k l xl. 

The subscriptj = e, i refers to electrons and ions, In this linearized case, the acceler 
ation equation can be solved analytically by integrating along the characteristics 
For the one-species plasma case, the ions are considered to be an immobile back. 
ground. Figure 2 shows the power spectrum of the 2-D electron Bernstein moder 
with klI\,, = 1.02, W&U,, = 1. The computational parameters are N, = N, = 4 
Nd = N, = 8, ND = 0, coD8 At = 7~14, vIl,,, = 0, and a, = 4.0. The sequence 01 
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FIG. 1. The 24 D configuration; (a) shows the spatial domain and (b) shows the computational 
mesh in the velocity space. 

the Fourier mode of potential +(kL, t) over 512 time steps was Fourier transformed 
with respect to time in order to obtain the power spectrum p(k, , o) cc I $(kL, u)12. 
The peaks in Fig. 2 have the values o/w,, = 0, 1.156, 2.125, 3.0625, while the linear 
theory [9] gives w/w,, = 0, 1.1354,2.043,3.005, etc. We should point out the existence 
of the strong dc mode (w = 0) in 2-D collisionless magnetized plasmas which was 
predicted by Hsu and Montgomery [lo]. We also note that the recurrence effect, 
which occurs in the numerical integration of 1-D Vlasov equation for an unmagnetized 
plasma because of the finite resolution in the velocity space [4, 6, 111, disappears for 
a 2-D magnetized plasma. This is due to the fact that the magnetic field plays a 
dominant role in the particle motion. For particle motion along the B field, we would 
still expect recurrence effects. However, for most of the physically interesting cases, 
the wavelength along the field lines are very large compared to the perpendicular 
wavelength (k,, << kJ. Therefore, the recurrence time T, = 2w/(k,, do ,,) would be 
very long for a modest number of grid points in the a,, direction. On the other hand, 
the recurrence effect can be smoothed out by adding a collision term [12] or other 
artificial entropy producing term [6] to the system. 

Figure 3 shows the power spectrum of 2-D two-species plasma with k,,h, = 0, 
k,hD = 1.414, w,,/c+,~ = 1, TJT, = 1, mi/me = 25. The computation parameters 
are the same as in Fig. 2. Besides the electron Bernstein modes and dc modes, we 
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FIG. 2. Power spectrum of the 2-D linearized electron electrostatic waves in a magnetized plasma 
with k,AD, = 1.02, w&,,~ = 1, k JDs = 0. 
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FIG. 3. Power spectrum of the 2-D linearized electrostatic waves in a two-species magnetized 
plasma with k,XD. = 0, k,XD, = 1.414, wcd/wpe = 1, T./T, = 1, milm. = 25. 
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FIG. 4. Power spectrum of the 2&D linearized electron electrostatic waves in a magnetized 
plasma with k,l\~, = 0.1, k,hD, = 1.414, OJ&~~ = 1. The peaks are located at ~$0~~ = 0.125, 
0.8125, 1.1875, 2.1875, 3.125. 
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FIG. 5. Power spectrum of the 24-D linearized electrostatic waves in a two-species magnet&d 
plasma with k,, AD. = 0.01, k,h,, = 1.414, o&J,,~ = 1, T,/T, = 1, and mJm. = 25. 
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have also obtained the ion Bernstein modes. Figure 4 shows the power spectrum of a 
2&D electron plasma with k,,&, = 0.1, k,X, = 1.414, w&J~~ = 1. The compu- 
tation parameters are IV, = NV = 4, IV6 = N, = IV, = 8, almrr = 4.1, 0, = 4.2, 
wap dt = 7r/4. The result agrees very well With Tataronis’ linear solut?&s [13]. 
Figure 5 shows the power spectrum of a 2)-D, two-species plasma with k,hD = 0.01, 
k,h, = 1.414, wCc/wpB = 1, Te/Ti = 1, mi/me = 25. The computation parameters 
are the same as in Fig. 4. For the above computations, the total density, total momen- 
tum, and total kinetic energy are conserved except due to roundoff errors. 

(B) 2-D Nonlinear Case 

A 2-D electron plasma with ~,,/q,~ = 1 has been studied. The initial condition 
is taken to be 

f(x, v, 0) = 1/27r exp( -v2/2)(1 + A cos kx + B cos ky) 

where A = B = 0.01 and kh, = 1.02. The computation parameters are 

N, = NV = 8, N6 = N, = 16, vl,, = 4.5, wae At = ~$3. 

FIG. 6. Power SPWA~LI~ of the 2-D nonlinear electron electrostatic wave in a magnet&d plasma 
with k, = k, = 0, k&. = 1.02, T./T* = 1, mi/q, = 25, and W&J~ = 1. The peaks are located 
at w/u,, = 0, 1.1875, 2.125, 3.0625, 4.0. 
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We used method 1 described in Section 2 to integrate acceleration Eq. (16) because 
of the strong magnetic field. Method 1 is superior to method 2 because it separates 
the fast gyro motion from the slow guiding center drift. If we use method 2, we have 
to take upe At as small as upe At = 0.05 to obtain the same accuracy. 

Figures 6 and 7 show the power spectrum and autocorrelation of the potential for 
(1,0) mode. The autocorrelation of the potential $(kL, t) is defined by CkL(r) = 
(l/TmitX) JF &k, , t) 4*(/c,, t - T) dt. The computation is carried out for 256 
time steps with w,,Tmax = 32~. Comparing Figs. 6 and 2, we see that the results of 
the nonlinear calculation agree very well with the linearized case. The autocorrelation 
of the potential shows the phase mixing effects of the Bernstein modes, which generate 
the damping [ 141 and recurrence phenomena. 

69 / , 
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61 

I 

!+ /wpe = I 

k,P,=lOZ kyPe=O 
j 

FIG. 7. The autocorrelation of the potential 4(k,, t) for the nonlinear magnetized electron 
pasma as in Fig. 6. 

FIG. 8. Power spectrum of (1,l) mode with k, = 0, kd ~~ = k& = 1.02. The other parameters 
are the same as in Fig. 6. 
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The nonlinear coupling is small; the power spectrum of (1, 1) mode is about a 
factor 1O-3 smaller than that of (1,0) mode and is shown in Fig. 8. The other higher 
number modes are essentially negligible. 

The conservation of the total energy has relative error 10s9 at wpsf = 32~. This 
simulation corresponds to the use of 16384 grid points in the phase space as far as 
computer storage is concerned. As a reference the computation time is 10 set per 
time step for an unoptimized Fortran code on an IBM 360/91. Thus a great saving 
of computer time is achieved. 

4. CONCLUSION 

In this work we have generalized the second-order splitting scheme given by Cheng 
and Knorr [6] to integrate the three-dimensional, collisionless, magnetized Vlasov 
system. The resulting free streaming equations are integrated by employing Fourier 
interpolation as before, but the acceleration equation is integrated by a new splitting 
scheme, and Gazdag’s ASD method and Fourier interpolation are employed to solve 
the final fractional equations. As a result, the time step dt can be chosen to be large 
because the fast gyro motion of the plasma has spearated from the slow guiding center 
drift and is integrated exactly. 

The splitting scheme was tested on the linearized and nonlinear Vlasov equation 
in 2 D and 24 D with a Maxwellian equilibrium distribution. The results of these 
experiments are in very good agreement with the analytic theory. The important 
feature is not only that the computation time is quite low, but also that good results 
can be obtained with a few number of grid points. Thus, the 3-D integration of the 
Vlasov equation can be carried out by using presently available computers. 
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